
Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 1 of 75 
 

  



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 2 of 75 
 

 

 

 

 

 

Project supervisor: 

Kim Duus Thøisen 

KT@easv.dk 

 

Participants: 

Denisa-Gabriela Neagu 

dennea01@easv365.dk 

 

 

 

 

 

 

 

 

 

 

 

GitHub repository: https://github.com/denisa122/Bachelor-s-Degree-Project 

Render: https://mindscribe-frontend.onrender.com/ 

mailto:KT@easv.dk
mailto:dennea01@easv365.dk
https://github.com/denisa122/Bachelor-s-Degree-Project
https://mindscribe-frontend.onrender.com/


Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 3 of 75 
 

Table of Contents 

Introduction ................................................................................................................ 6 

Problem statement ..................................................................................................... 7 

Participants ............................................................................................................. 7 

Subject .................................................................................................................... 7 

Problem/ Problem area ........................................................................................... 7 

Main question and sub-questions ........................................................................... 8 

Method/ Procedure ................................................................................................. 8 

MoSCoW Prioritization ............................................................................................... 9 

M: Must have .......................................................................................................... 9 

S: Should have ..................................................................................................... 10 

C: Could have ....................................................................................................... 10 

W: Will not have .................................................................................................... 11 

Project Management ................................................................................................ 12 

Task management ................................................................................................ 12 

Agile Development Methodology .......................................................................... 13 

Challenges ............................................................................................................ 13 

Design ...................................................................................................................... 15 

Pages on the website ........................................................................................... 15 

Sketches ............................................................................................................... 16 

Wireframes ........................................................................................................... 23 

Prototype .............................................................................................................. 29 

Database – Design & Implementation ...................................................................... 33 

ER (Entity Relationship) Diagram ......................................................................... 34 

RDM (Relational Data Model) ............................................................................... 35 

PostgreSQL Implementation ................................................................................. 37 

Database setup ................................................................................................. 37 

Model definitions ............................................................................................... 39 

Database Synchronization ................................................................................ 40 

Seeding data ..................................................................................................... 40 

MongoDB Atlas Implementation ........................................................................... 41 

Database setup ................................................................................................. 41 

Model definitions ............................................................................................... 42 



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 4 of 75 
 

Integration with server .......................................................................................... 42 

API (Application Programming Interface) ................................................................. 44 

Routes and Endpoints .......................................................................................... 44 

API Calls ............................................................................................................... 45 

Version Control ......................................................................................................... 48 

GDPR (General Data Protection Regulation) ........................................................... 49 

Lawfulness, Fairness and Transparency .............................................................. 49 

Data Minimization ................................................................................................. 49 

Right to Access and Deletion ................................................................................ 49 

Data Protection Measures .................................................................................... 50 

Code Implementation ............................................................................................... 51 

Tools, Technologies, and Frameworks .................................................................. 51 

Task Management ............................................................................................. 51 

Design and Planning ......................................................................................... 51 

Version Control.................................................................................................. 51 

Databases ......................................................................................................... 51 

IDE .................................................................................................................... 52 

Frontend Development ...................................................................................... 52 

Backend Development ...................................................................................... 52 

Sentiment Analysis and Insights........................................................................ 53 

Testing ............................................................................................................... 53 

Deployment ....................................................................................................... 53 

Others ............................................................................................................... 53 

Interesting implementations .................................................................................. 53 

Authentication and Authorization ....................................................................... 54 

Credentials to test the application ......................................................................... 60 

Testing ...................................................................................................................... 61 

User testing .......................................................................................................... 61 

Backend testing .................................................................................................... 62 

Frontend testing .................................................................................................... 64 

Deployment and Hosting .......................................................................................... 65 

CI/CD Pipelines .................................................................................................... 66 

Future improvements ............................................................................................... 70 



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 5 of 75 
 

Notifications & Reminders .................................................................................... 70 

More complex Insights page ................................................................................. 70 

Guided prompt journaling ..................................................................................... 71 

Export journal entries ............................................................................................ 71 

Personalization ..................................................................................................... 71 

Homepage for guests ........................................................................................... 71 

Today’s quote ........................................................................................................ 71 

Machine Learning ................................................................................................. 72 

Conclusion ............................................................................................................... 73 

Reference list ........................................................................................................... 74 

 

  



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 6 of 75 
 

Introduction 

The main purpose of this final project of the Top-Up Bachelor’s Degree study program 

is to put in practice all the theory, skills, and knowledge that I have gained during the 

education. In completing this project, I not only used the skills and knowledge that I 

already possessed, but also stepped out of my comfort zone and had the opportunity 

to learn new skills and gain more knowledge across diverse areas. Creating this 

project has allowed me to successfully achieve the learning outcomes that the study 

program sets for its students. 

The project focuses on the development of a website application designed to provide 

users with a safe space to put their thoughts into writing, in the form of journaling. 

Sentiment analysis is then performed on the journal entries made by the users, in order 

to create tailored personal insights for each individual user. Another functionality of the 

platform that allows for the generation of custom personal insights is the mood tracker 

page. This consists in a series of questionnaires that the users can fill out during the 

day, and which focus on the emotional states and fluctuating moods that the users 

might experience throughout the day. The primary goal of this website application is to 

provide a safe space for users and to allow them to express their feelings and moods, 

and to provide users with actionable insights based on their inputs. 

This report aims to describe into more detail the process of designing and 

implementing this website application, including the challenges that I have 

encountered during the development process and the solutions that I came up with.  



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 7 of 75 
 

Problem statement 

The development of this project was inspired by the current events that were 

happening around me at the time of having to decide the topic of the final project of 

my education. The winter weather and atmosphere had set in, and I came up with the 

idea of creating a platform that might help users through this hard time of the year, and 

not only, by providing a safe space for self-expression. Although there are other 

options out there that provide journaling and mood-tracking tools, I could not find 

anything that also has the functionality of creating tailored insights based on the user 

input. I decided to address this gap in other current applications and create a platform 

that integrates both sentiment analysis based on user input (journal entries), and a 

mood-tracking feature through different period of time.  

Participants 

The only participant in this project is me, Denisa-Gabriela Neagu. I fulfilled the roles 

of the designer, the developer and the evaluator, therefore undertaking all aspects of 

the project. This approach allowed me to utilize all the skills that I have gained during 

the study program, across multiple areas – design, databases, frontend and back-end 

implementation, testing, and deployment. 

Subject 

The subject of this project is to create a web application that combines features of 

journal writing with generating personal insights into a user’s mental well-being 

through sentiment analysis and mood tracking. 

The application that I designed and implemented aims to create an engaging and 

meaningful experience for its users and to promote emotional well-being and self-

awareness through its features. 

Problem/ Problem area 

The inspiration behind this project was based on current events that were happening 

around me, with the winter season setting in and the general mood and feelings of 

people going down due to this change.  

After performing some research to see the available options of applications that might 

help ease this transition and might provide support for those in need of it, I came to 

the conclusion that there is a lack of a platform that would combine the aspect of users 

being able to express themselves freely, with the aspect of providing the users with a 

clear and straightforward visualization of their actual feelings, moods and sentiments 

and how these change and evolve throughout periods of time. While there are many 

existing solutions that focus on the aspect of journaling, these solutions don’t integrate 

meaningful feedback or a deeper analysis of the users’ emotional journeys.  



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 8 of 75 
 

I decided to bridge this gap with the help of the application that I came up with. It seeks 

to encourage and empower users to reflect on their mental well-being and emotional 

well-being, with the help of the tools and features provided by the platform. 

Main question and sub-questions 

How can a journaling web application integrate sentiment analysis and mood tracking 

over periods of time, in order to provide personalized insights into its users’ emotional 

journeys? 

Sub-questions: 

• What are the key features needed on the platform, to create an engaging 

journaling application? 

• How can sentiment analysis be implemented to generate meaningful and 

accurate insights based on the user input? 

• How can user data be managed securely and be in compliance with the GDPR 

regulations? 

Method/ Procedure 

The creation of this project followed a structures development methodology, which 

included the following steps: 

1. Research and coming out with a concept. This consisted of researching current 

similar solutions and identify what they are lacking in or what they could do better, 

and then defining project requirements and objectives based on the findings of my 

research. 

2. Design. This phase consisted of coming up with what pages I want there to be on 

my application, and then creating paper sketches and wireframes, as well as 

prototypes for these pages. I tested my design by performing a number of user 

tests. I also created my desired database design during this step of the project.  

3. Development. The development step was the longest and most difficult one, since 

it consisted of implementing the database, the back end and the frontend of my 

application.  

4. Testing and evaluation. This consisted of conducting integration tests on the 

backend components of my application, to make sure that the application 

performed as expected.  

5. Deployment. This step meant hosting the application on a live server. 

  



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 9 of 75 
 

MoSCoW Prioritization 

The MoSCoW prioritization is a four-step prioritization technique for managing project 

requirements. The acronym MoSCoW stands for the four categories of initiative: must-

have, should-have, could-have a won’t have, or will not have right now. (Moscow 

prioritization 2024)  

I decided to follow this prioritization technique in order to divide the requirements for 

my project into separate categories and to get a better overview of what were the most 

important features to implement on the platform, and what were some features that 

had a lower degree of importance. The MoSCoW prioritization that I created can be 

seen below, in Figure 1. 

 

Figure 1. MoSCoW Prioritization of project requirements 

M: Must have 

This category includes all the project requirements that are mandatory for the project. 

The implementation of these requirements leads to the successful implementation of 

the desired functionality of the project, and without these features, my website 

application could not be considered finished.  

Since the main focus of the platform that I was creating was on two things – users 

being able to express themselves through journaling, and the platform generating 

personalized insights based on these journal entries and also on mood tracking – the 

features that could not miss from the website are the following: free-form journaling, 



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 10 of 75 
 

daily mood tracking, and personalized insights. Sentiment analysis was also a must-

have feature, due to the fact that this is what is used to analyze the text journal entries 

made by the users. Tracking mood trends over time was also a very important aspect, 

since it is a very useful way of allowing users to visualize how their mood changes and 

fluctuates over different periods of time, and better understand how certain events in 

time affect their emotional well-being. I decided that the option of users setting daily 

goals for themselves was also a feature that must be implemented on the platform, 

since setting clear daily objectives and celebrating small victories, in the form of 

completing a task or a chore, can be a mood booster for many people. Crisis 

intervention is also a very important feature that I thought has to be implemented on 

the website, since it is a way of alerting users that there is available help if they are 

feeling lower for a period of time. The last must-have feature that I came up with for 

my platform was the possibility of registering and logging in on the platform. This is 

important, as it provides data security – especially when dealing with such sensitive 

data about users – and it allows the users to access the platform from different devices, 

while still keeping their data. 

S: Should have 

This category includes the project requirements that are one step below the must-have 

requirements. This means that these requirements are important to completing the 

project, and add other value to the project, but are not vital.  

Features like guided prompt journaling, a notifications system and reminders, 

customization (for example, customizing the user interface to either light mode or dark 

mode, choosing whether scales should be displayed as numerical or emoji scales, and 

so on), gamification (offering some kind of rewards or achievement to users for 

performing tasks like completing all three mood tracker questionnaires during the day, 

setting daily goals for a number of days in a row, entering journal entries regularly, 

etc.) and stress relief tools (like breathing exercises, countdown timers for deep 

breathing and progressive muscle relaxation exercises) would add significant value to 

my application and make it more robust, but the application can function and make 

sense as a finished product without them as well. 

C: Could have 

This category includes the project requirements which would be nice to have, but in 

the case that they are left out from the project, they will have a much smaller impact. 

This kind of requirements have low priority compared to must-have and should-have 

requirements. 

What I thought are some nice features to potentially add to the platform, in order to 

make it more robust and engaging for the users, are adding guided meditation (both 

audio or text-based), having a resource library, where users can access self0help 

resources and read articles on different topics (such as mindfulness, meditation 

techniques, managing anxiety, stress-relief exercises, etc.) and having a section 



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 11 of 75 
 

dedicated to interactive exercises for the users, which they can practice individually 

from the comfort of their own home (like challenging negative thought, practicing self-

compassion, etc.). 

W: Will not have 

This category includes the project requirements that are not a priority for the current 

project’s time frame.  

Some examples of what I thought are project requirements than qualify in this category 

are the following: peer support in the form or peer-to-peer anonymous chat, AI chatbot, 

support groups that users could join based on shared experiences, discussion forums 

that users could participate to, and the data export option (users could export their 

mood tracking data and journal entries, and potentially share this with a professional). 

Most of these features are in this category because they are not so much focused on 

individual growth and understanding, as they are in sharing resources and 

experiences with other people as a group. 

  



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 12 of 75 
 

Project Management 

Project management was crucial for the development of this project, and I tried to 

ensure that I had an organized approach when it comes to this. Since I was working 

alone throughout the whole project, I was responsible for aspects related to both time 

management and to the technical development of the project. 

To ensure that I kept making progress during all the stages of the project, from 

research to design and actual implementation and delivery, I used a combination of 

task managements tools. 

Task management 

As I was managing the project on my own, I was the one responsible for deciding the 

priority of the features to be implemented on my platform, estimating the duration of 

the implementation of these features and deciding when to implement what feature. 

To get a better overview of all the work that still needed to be done in order to 

implement an application that fulfills the requirements that I set in a timely manner, I 

decided to divide the project into smaller milestones. Some of these milestones 

included research of tools, technologies and framework, creating a guiding frontend 

design, creating a database schema, setting up the backend API, implementation of 

the frontend, and so on.  

I figured out that the best approach for me would be to decide in the beginning of each 

week what set of tasks to focus on during that specific week. This allowed me to set 

clear goals for the week and stick to the implementation of those specific features. I 

tried to make sure that I allocated enough time for each of the tasks, depending on the 

complexity that I estimated them to be of, while also leaving some flexibility for issues 

that might arise during the process of working on these tasks. Each week, I reviewed 

the progress that I made during the previous week and proceeded to assign the tasks 

to work on for the following week.  

To organize the tasks that I was working on, I used Trello, a task management tool 

that allowed me to create a visual board with lists and cards. I divided the tasks (cards) 

in three categories, “To do”, “Doing”, and “Done”, and moved them around from one 

section to another based on the stage of the task at certain points in time. I assigned 

a due date to each task, and whenever a task was done, I was able to mark it as 

completed using Trello’s built-in feature to do so. Trello also allowed me to make 

adjustments to task deadlines and to re-prioritize tasks, based on certain situations 

that appeared during the development process. 

By being able to manage my own deadlines through the use of Trello and being able 

to see a clear visualization of tasks and their state, I kept track of my project’s progress 

without feeling overwhelmed or stuck at any point. 



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 13 of 75 
 

Agile Development Methodology 

In the process of managing this project, I aimed to adopt certain Agile development 

methodology principles. Agile is a project management approach that is centered 

around incremental and iterative steps to complete a project. The Agile approach 

prioritizes quick delivery and adapting to change. (What is agile? and when to use it) 

Even though Agile is most often associated with teams and working collaboratively on 

a project, I found that some of its main principles could be applied to working 

individually on project as well. 

Agile methodology divides work into sprints, in which specific tasks or features are 

completed. I didn’t have time for a more formal division of my work into sprints, but I 

did section my project into smaller parts and try to assign realistic deadlines for each 

task. The weekly planning of new tasks and revision of tasks from the previous week 

could be considered as treating each week as a short sprint. 

Another aspect of Agile development methodology is being able to adapt based on 

changing requirements and based on constant feedback. I tried to embrace this 

principle by reviewing my application’s functionality frequently, more precisely by 

testing each feature that I implemented as if I were a real-life user of the platform, and 

refining these features based on this. This allowed me to have more flexibility to the 

needs and requirements of the application that I was developing. 

Challenges 

Being responsible for both project management and project development came with a 

few challenges, especially considering that this was the first time when I was managing 

or implementing a project of this scale. While I have previous experience with working 

on smaller projects throughout my education and throughout that two internships that 

I have completed, I never had to deliver such a comprehensive product on my own. 

A particularly difficult aspect that I encountered was correctly estimating how long it 

would take to finish certain tasks. There were instances when I underestimated the 

time required for the development of specific features, especially when it came to 

backend implementation of the code, which led to some unexpected delays. There 

were also times when I allocated too much time for particular tasks, which I now realize 

that were not as important as I considered them to be initially. 

Since this project was a personal project, at times I also found myself getting caught 

app in adding new features that were not necessarily of high priority for the scope of 

the project, or fine-tuning aspects of the application that were minor in comparison to 

others. It was important for me to recognize when these adjustments that I was making 

started to come in the way of the original goals and deadlines that I initially set for the 

project. As the project period went on, I always tried to make sure that I was not letting 

this happen too often and not letting it affect the final result that I was aiming to deliver 

for this project. 



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 14 of 75 
 

Overall, managing both the project management aspects and the actual development 

of the code came with its challenges, but it also provided me with some valuable 

insights into task prioritization, time management, and handling such a complex 

project through every step of the design and development process. It is my belief that 

I managed to navigate each obstacle that appeared during the time that I spent on this 

project, and that I was able to deliver a product that meets the requirements and 

expectations that I set for myself in the beginning.  

   



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 15 of 75 
 

Design 

This section of the report will describe in more detail the process of designing the user 

interface of my website application, before the actual implementation. 

Pages on the website 

The first step was coming out with a layout of the website and deciding what pages 

should be included and later on implemented for the purpose of this project, and what 

each of these pages should contain. This process was based on the categorization of 

project requirements that I have achieved using the MoSCoW analysis, described in 

an earlier chapter of this report. 

I decided to focus, for now, only on the pages that are essential to any website 

application (like homepage, log in page, register page), as well as on the pages that 

would encompass the main functionality that I desired for the platform. The final pages 

that I decided to implement for this project are: Register page, Login page, Homepage 

for guests, Homepage for logged in user, Journal page, Mood Tracker page and 

Insights page. 

The Register and Login page are standard to any application that allows users to 

create an account and to log in to their account. These two pages both consist of just 

a simple, typical form.  

There are two homepages for my application, one for the situation when a guest (either 

a user who does not have an account, or a user who is not currently logged in) is 

browsing the website, and one for the case when a user is logged in. These two pages 

serve different purposes. On one hand, the homepage dedicated to guests is meant 

to attract users, by introducing them to the platform and its main features, and guide 

them to sign up. On the other hand, the homepage dedicated to a user who is logged 

in to the platform is meant to provide quick access to some of the most important 

features of the platform (like journaling, mood tracking questionnaires, and insights). 

This page also contains some of the project requirements from the should-have 

category, like notifications, which I thought be a nice addition to a front page. 

The Journal page is the place where the users can easily access the journal writing 

tool provided by the website. Here, they can also see their previous journal entries, 

categorized by month and year. 

The Mood Tracker page is the one where users can access the three mood tracker 

questionnaires that they have the option of filling in throughout the day – Morning 

questionnaire, Midday questionnaire and Evening questionnaire. The users can also 

set their daily goals on this page and mark them as complete whenever they finish 

them in real life. It is also easy for users to navigate to their personal insights from this 

page. 



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 16 of 75 
 

The Insights page is the place where users can see and track their emotional journey. 

It provides visual representations for mood changes, increases or decreases in energy 

level or stress level, what kind of emotions they have been experiencing lately and 

their respective percentages, and the most used sentiments, extracted from their 

journal entries. 

Sketches 

Sketching is an invaluable tool that allows to connect the abstract concepts to the 

tangible visuals. When ideas are put on paper, the vision begins to take shape and a 

better sense of understanding of the project is provided. (Dudley, The role of sketching 

in the design process 2023) 

For me, the process of creating sketches for each page of my application helped me 

better differentiate between the unique features of the platform and the scope and 

purpose of each of the main pages found on my website.  

Below, the initial sketches that I created can be seen. 

 

Figure 2. Sketch - Lofgin & Register pages 



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 17 of 75 
 

 

Figure 3. Sketch - Homepage, guest (1) 



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 18 of 75 
 

 

Figure 4. Sketch - Homepage, guest (2) 



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 19 of 75 
 

 

Figure 5. Sketch - Homepage, logged in user 



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 20 of 75 
 

 

Figure 6. Sketch - Journal page 



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 21 of 75 
 

 

Figure 7. Sketch - Mood Tracker page 



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 22 of 75 
 

 

Figure 8. Sketch - Insights page 

  



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 23 of 75 
 

Wireframes 

Wireframes represent basic visual representation of a user interface, which outline the 

structure and the layout of a webpage. They serve as blueprints that help understand 

the placement of elements on the page, the structure and flow of the design, and they 

don’t focus on details like colors, fonts or images. (What is wireframing? - updated 

2024 2024) 

I created wireframes based on the sketches that I had previously finished. Doing this 

allowed me to better visualize my design and how each element or block of elements 

would look like on a webpage, as well as how the flow of the elements looked like and 

whether I was satisfied or not with the design that I previously thought about in my 

sketches. I kept changing the wireframes and testing how they would look like as an 

actual website, until I was satisfied with the results. 

The final form of the wireframes can be seen below. 

 

Figure 9. Wireframe - Register page 



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 24 of 75 
 

 

Figure 10. Wireframe - Login page 



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 25 of 75 
 

 

Figure 11. Wireframe - Homepage, guest (Option 1) 



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 26 of 75 
 

 

Figure 12. Wireframe - Homepage, guest (Option 2) 



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 27 of 75 
 

 

Figure 13. Wireframe - Homepage, logged in user 

 

Figure 14. Wireframe - Journal page 



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 28 of 75 
 

 

Figure 15. Wireframe - Mood Tracker page 



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 29 of 75 
 

 

Figure 16. Wireframe - Insights page 

Prototype 

A prototype transforms the original concept into a digital form, representing a model of 

the proposed product. It acts as a small-scale example of a product, while allowing to 

make required changes to ensure that a product is viable before more time and 

resources are invested into it. It is also a tool for getting feedback from the potential 

users of the application, which then is used for making changes and fixing any issues 

before moving forward with the actual implementation of the product. (What is a 

prototype?) 

I did not create a final prototype for my web application, due to the fact that I 

considered it to not be as high priority as the actual implementation itself. Considering 

the fact that I was planning to undertake a huge task with this project, including using 

technologies, tools, frameworks or libraries that I had not used before, I decided that 

skipping creating the prototype would save me valuable time and would allow be to 

focus more resources on the actual implementation of the project. 



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 30 of 75 
 

Although I did not create a final prototype, I did choose a palette of colors for my 

website, and I transformed some of the wireframes using these colors and using actual 

images and text that would be implemented on the platform itself. These can be seen 

in the images below. 

 

Figure 17. Color palette 

 

Figure 18. Prototype - Register page 



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 31 of 75 
 

 

Figure 19. Prototype - Login page 

 

Figure 20. Prototype - Homepage, logged in user 



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 32 of 75 
 

The design that can be seen in this section is the final one that I decided on, prior to 

the actual implementation of the website. However, during the actual implementation, 

I had to make a few tweaks and changes and update the design to better fit the newly 

discovered needs or requirements of the application, which is why some of the designs 

show above are inconsistent with the final look of the frontend pages of the website. 

  



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 33 of 75 
 

Database – Design & Implementation 

The next step in the process of creating, designing, and implementing my project was 

to come up with the type of database that I wanted to use, and then to design and 

implement it.  

I decided to go for a hybrid approach, and implement a combination of two databases 

– one SQL database to store structured data (like user profiles, mood tracker entries, 

questions, questionnaires, journal metadata, etc.)  and one NoSQL database to store 

unstructured data (like full journal entries and sentiment analysis results). I have never 

tried implementing this approach in previous projects, so it was a personal challenge 

that I wanted to fulfill. 

For the SQL database, the options that I was considering choosing between were 

PostgreSQL and MySQL, which are two of the most popular and widely used open-

source SQL-based database management systems (DBMSs), based on my research. 

Even though they both are widely used and offer good performance, rich features, and 

strong community support, I found through my research that it is better to use 

PostgreSQL when storing and querying structured data, along with unstructured or 

semi-structured data (like the options attribute from the Questions table, and the 

preferences attribute from the Users table, which are both of type JSON in my 

application). I also found out that PostgreSQL allows for more flexibility, and it is easier 

to scale or enhance project over time when using it, which might come in very handy 

when dealing with an application like the one that I was building. So, my final choice 

was PostgreSQL for the SQL database. 

When it comes to the NoSQL database, the options which I was considering using for 

my project were MongoDB Atlas (the cloud-hosted version of MongoDB) and Firestore 

(Google Firebase Cloud Firestore), which are both document-based NoSQL 

databases, storing data in a document format. While both options would be 

appropriate for the needs of my project on a smaller scale, I found MongoDB Atlas to 

be the better choice for my project on a larger scale. Some reasons for that are the 

fact that the journal entries that I am planning to store in the database are text-heavy 

and semi-structured, and my research led to me believe that MongoDB Atlas has an 

edge over Firestore when it comes to complex querying, text-search capabilities and 

flexible schemas. From a scalability point of view, both MongoDB Atlas and Firestore 

handle large amount of data, but Firestore may incur higher costs, especially for 

frequent read-write operations on text-heavy data. So, my final choice for the NoSQL 

database was MongoDB Atlas. 

For the SQL database that I used in my project, I decided to create an entity 

relationship diagram and a relational data model, to get a better understanding of my 

data and its structure, and to make the actual implementation of the database go 

faster. These diagrams will be discussed in what follows.  



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 34 of 75 
 

ER (Entity Relationship) Diagram 

An Entity Relationship Model is a visual representation used for identifying the entities 

that need to be represented in the database, and how those entities are related to 

each other. Creating an ER diagram provides a standard solution for visualizing the 

data in our database in a logical way, while modeling real-world objects and the relation 

between the real-world objects. (Comment et al., Introduction of ER model 2024) 

The ER diagram that I created based on my project’s needs and requirements can be 

seen in Figure 21. 

 

Figure 21. Entity Relationship Diagram 

In order to create a robust system that ensures the desired functionality for my project, 

I decided to have the following entities in my relational database: Goals, Users, 

JournalMetadata, MoodEntries, MoodResponses, Questionnaires, Questions, and 

QuestionnaireSubmissions. 

The Users entity represents the users of my application, who can interact with the 

system in various ways – like submitting the daily mood questionnaires, writing journal 

entries, setting daily goals and tracking their mood, mood trends and changes. 

The Goals entity represents the daily goals that a user can set for themselves. These 

goals have the attribute “completed”, which might be useful for tracking progress and 

generating user insights – like percentage of daily goal completion – in the future. 

The Questionnaires entity is represented by the static questionnaires that can be 

reused by multiple users, across different dates and times of the day. The 

questionnaires are essential in assessing users’ moods, both throughout the day and 

over a longer period of time. 



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 35 of 75 
 

The Questions entity is characterized by the individual questions that are found within 

each questionnaire. Each question is associated with one specific questionnaire, and 

has a predefined type (for example scale, text, yes/no, multiple choice). 

The QuestionnaireSubmissions entity represents each instance of a user submitting a 

questionnaire. This is helpful in ensuring that each questionnaire corresponding to a 

specific time of day can only be submitted once per day by a user. 

The MoodEntries entity represents each instance of a user filling out one of the mood 

questionnaires available to them daily. Each record in the MoodEntries table 

corresponds to a single instance of a user filling out a mood questionnaire, and is 

associated with multiple mood responses, one for each question in the respective 

questionnaire. 

The MoodResponses entity represents the individual answers to each question in a 

mood questionnaire. Every time a user answers a question from a questionnaire, it 

generates a new entry in the MoodResponses table. 

The JournalMetadata entity stores the metadata for each journal entry made by a user 

of the application. This entity is useful for allowing users to maintain their journaling 

history and for potentially analyzing it and including it in the personalized insights of 

each user. 

RDM (Relational Data Model) 

The next step after finalizing the Entity Relationship diagram was to convert it into a 

Relational Data Model (RDM). An RDM showcases a collection of tables, including the 

attributes and type of these attributes for each table, and the relationships between 

these tables. (GeeksforGeeks, Relational model in DBMS 2024) 

The RDM that I designed based on my ER diagram can be seen in Figure 22. 



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 36 of 75 
 

 

Figure 22. Relational Data Model 

Each of the tables corresponds to one entity from my ER diagram. The relationships 

between these tables are established through the foreign key constraints, as can be 

seen in my RDM: a foreign key is pointing to the key that is a primary key in its original 

table, maintaining referential integrity between the related data. 

Since all the relationships between the tables in my ER diagram were either one-to-

one or one-to-many, I did not need to create any additional tables (names junction 

tables), which would have been needed in the case of many-to-many relationships. 

The RDM that I created is designed to minimize data redundancy and to ensure data 

consistency, which was achieved by adhering to normalization principles. 

Normalization is defined to be the process of organizing data in the database and is 

used in order to minimize redundancy from a relation or a set of relations. (DBMS 

normalization: 1NF, 2NF, 3NF and BCNF with examples - javatpoint) 

The normal form that I wanted to achieve for my database was the Third Normal Form 

(3NF).  

The First Normal Form (1NF) states that each table cell should contain only atomic 

values, which are the smallest units of data, and which cannot be divided into other 

smaller parts. I ensured this in my RDM by already dividing attributes that could 

potentially be divided into smaller parts (for example, in the Users table, instead of 

having an attribute called “name”, I created the attributes “firstName” and “lastName”). 

The Second Normal Form (2NF) states that a relation (table) needs to be in 1NF and 

that all attributes that are not keys have to be fully dependent on the primary key. 

These requirements are fulfilled in my RDM, since I already established that 1NF is 



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 37 of 75 
 

fulfilled and due to the fact that every non-key attribute in any of the tables is 

dependent on the primary key of that respective table and only makes sense in the 

context of that table. 

The Third Normal Form (3NF) states that a table needs to be in 2NF and all the non-

key attributes are dependent on the primary key but, at the same time, they are not 

dependent on other non-key attributes (so they are dependent on the primary key 

only). I already established in the previous paragraph that 2NF is fulfilled in my RDM. 

By looking at the tables in my RDM and at their respective attributes, it is clear that the 

second condition of the 3NF is fulfilled as well. Therefore, I have achieved the Third 

Normal Form in my Relational Data Model. 

PostgreSQL Implementation 

In this section, I will explain in more detail how I implemented the PostgreSQL 

database in my project, as a next step after designing the diagrams that I talked about 

in previous subchapters of this chapter. I will provide more information regarding the 

setup of the database connection, the creation of the necessary models, the 

configuration of the associations between the tables corresponding to my RDM, and 

seeding initial data in some of my database tables. 

 

Database setup 

The first step in the implementation of the database was to set up PostgreSQL and to 

configure a connection to my database. In order to facilitate the communication 

between my application and the PostgreSQL database, I used Sequelize ORM 

(Object-Relational Mapping). An ORM is a helper that allows developers to work with 

data in a database using objects, acting as a bridge between the application’s code 

and the database. Sequelize is a Node.js ORM library that allows to work with different 

databases like MySQL, PostreSQL and SQLite. The benefits of using Sequelize are 

the facts that we can define models (how things look), we can introduce data 

validation, we can define associations (connections, for example between different 

models), and we are able to change things if needed through database migrations. 

(Singh, "Node.js database magic: Exploring the powers of sequelize Orm" 2023) 

The connection details, such as the database user, password, host, port and name 

are passed into Sequelize via environment variables that I defined, therefore ensuring 

security and flexibility in the case where another database might be used, and these 

details would change. This can be seen below, in Figure 23. 



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 38 of 75 
 

 

Figure 23. Setup Sequelize connection 

  



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 39 of 75 
 

Model definitions 

Based on the previously created ER diagram, I defined several models in my code 

using Sequelize, each model corresponding to an entity from the diagram. An example 

of one model from my code is the MoodReponse model, which can be seen in the 

image below. 

 

Figure 24. Example of model - MoodResponse model 

 

After configuring all the individual models, I also configured the relationship between 

these models, corresponding to the relationships between the entities in the database 

design diagrams, in the index.js that can be found in the same folder as the other 

PostgreSQL models. The associations defined in the index.js file can be seen in Figure 

25. 



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 40 of 75 
 

 

Figure 25. index.js – Associations 

Database Synchronization 

Once I defined all the necessary models and associations, I used the sync () method 

from Sequelize. This method ensures that the database schema reflects the model 

definitions that I implemented at all times. The code force: false means that the tables 

are created or updated without dropping any existing data. 

 

Figure 26. Database synchronization 

Seeding data 

In order to populate my PostgreSQL database with some initial data for the three mood 

tracker questionnaires – Morning questionnaire, Midday questionnaire and Evening 

questionnaire – I combined an SQL file (seed_data.sql) with a Node.js script file 

(insertData.js).  



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 41 of 75 
 

The seed_data.sql file contains the SQL statements designed to populate the desired 

tables of the database (questionnaires and questions), with the data predefined by 

me. This file contains INSERT INTO queries.  

The insertData.js file is a script for seeding the database. This executes the 

seed_data.sql file and inserts the predefined data into the database. More specifically, 

the script connects to the PostgreSQL database, reads the content of the 

seed_data.sql file, and runs the SQL queries contained in the file. To run the script, I 

used Node.js - node insertData.js. 

MongoDB Atlas Implementation 

In this following section, I will go through the implementation of MongoDB Atlas in my 

project. I will focus on the setup of the database connection, model definitions, and 

integration with the rest of the application. 

Database setup 

The first step of integrating MongoDB Atlas in my application was to set up a 

connection to the database. This is a pretty simple and straightforward process, since 

MongoDB Atlas represents a cloud solution for managing MongoDB databases, 

therefore eliminating the need for manual setup or maintenance of the database 

server. The connection was configured easily, using a MongoDB URI that contains the 

necessary connection details, like username, password, and database cluster 

information. Similarly to the implementation of the PostgreSQL database, I also 

environment credentials in this case to securely manage my database credentials. 

In order to establish a connection to MogoDB, I used the Mongoose library, which is 

an ORM library for MongoDB and Node.js. This ORM manages relationship between 

data, as well as providing schema validation and being used to translate between 

objects in the code and the representation of these objects in a MongoDB database. 

(freeCodeCamp, Introduction to mongoose for mongodb 2018) 

The code for connecting to my MongoDB Atlas database can be seen in Figure 27. 

 

Figure 27. Setup MongoDB connection 



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 42 of 75 
 

Model definitions 

To interact with MongoDB, I created two Mongoose models -journalEntryModel and 

sentimentAnalysisModel. Mongoose allows to define schemas for the data and to 

interact with the database in a more effective way. The two models that I created can 

be seen in Figure 28 and Figure 29. 

 

Figure 28. Journal Entry model 

 

Figure 29. Sentiment Analysis model 

Integration with server 

In my project, both PostgreSQL and MongoDB databases are integrated in the main 

application server, which is built using Express.js. Express.js is a web framework for 

Node.js that is designed to build web application and APIs. By using this framework, I 

was able to save time on tasks related to building a backend from scratch for my 

application in Node.js (tasks like setting up ports to route handlers, writing boilerplate 

code, and so on). (Codecademy, What is express.js?) 

In the server.js file from my application, I used separate functions to connect to 

PostgreSQL and MongoDB asynchronously, which ensures that the server is only 



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 43 of 75 
 

going to start accepting requests once both of the databases are connected. The 

connection to PostgreSQL is managed via Sequelize, and the connection to MongoDB 

is handled by Mongoose. After establishing connections to both databases 

successfully, the server starts listening to incoming requests. The code for starting my 

server, which includes connecting to both databases, can be seen in the image below. 

 

Figure 30. Start server code snippet 

  



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 44 of 75 
 

API (Application Programming Interface) 

This section of the report will be dedicated to providing more details regarding the API 

that I implemented in order to be able to interact with the backend of my application. 

An API is a mechanism that enabled two software components to communicate with 

each other, through a set of specific definitions and protocols. (What is an API? - 

application programming interface explained - AWS) 

As will be discussed into more detail in following sections of the report, I used 

Express.js, a Node.js application wjatframework, to build my desired API. My goal was 

to implement an API that adheres to RESTful design principles, so a REST 

(Representational State Transfer) API. Some of these constraints that are 

characteristic to a REST API are: a client-server architecture, requests from the client 

to the server are being managed through HTTP, a stateless client-server 

communication. 

The API that I designed and implemented represents the core component of my 

application, since it is responsible for managing data operations, user authentication, 

and the business logic. The API interacts with both the MongoDB and the PostgreSQL 

databases that I have implemented in my project, and it supports various operations 

– such as user authentication, CRUD operations for resources from my application 

like journal entries, questionnaires, daily goals, personalized insights and so on, and 

data retrieval by user. 

Routes and Endpoints 

The REST API that I created for my project has a modular structure, and it contains 

different handler for different resources. The routes are separated in my code 

implementation in distinct files, each of them representing one specific resource, such 

as authentication, goal, journal, insights, etc., and each of them managing operations 

for their respective resource. The routes are using the functions from the respective 

controller in order to handle logic, and a token verification middleware for security 

reasons, which further ensures modularity. 

An example of routes from my application can be seen in Figure 31 . This screenshot 

shows the authentication related routes, which handle user registration, login, logout 

and checking the login status. 



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 45 of 75 
 

 

Figure 31. Authentication routes 

API Calls 

In the frontend of my application, API calls are made using the Axios library in order to 

interact with the backend of the application (the server). 

In what follows, I will provide an example of how a request is sent from the client to 

the server, and how this request is processed and handled. 

In Figure 32, the frontend calls the API to fetch journal entries for the logged in user. 

Axios is used to send a GET request to the specific endpoint that handles this logic 

from the backend (/api/journal/entries), with the authentication token header as part of 

the request, to ensure that only an authorized user can access this data. Once the 

response is received from the server, fetchedEntries are set, which will then trigger the 

rendering of the journal entries corresponding to the logged in user in the frontend of 

the application.  



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 46 of 75 
 

 

Figure 32. Journal frontend API call 

On the backend side, the request from the frontend is received by the appropriate 

route handler that is defined in the file that includes all the routes corresponding to 

journal operations. These routes can be seen in the screenshot below. 

 

Figure 33. Journal routes 

The journal controller contains the logic of fetching the journal entries. This controller 

processes the request by querying the two databases – MongoDB for journal entries 

and PostgreSQL for journal metadata – and then send back the combined data to the 

frontend, as can be seen in Figure 34. 



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 47 of 75 
 

 

Figure 34. Journal controller 

  



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 48 of 75 
 

Version Control 

In this section, I will describe the version control of my application in more detail. 

Version control is an importance practice from software development that I used for 

tracking and managing any changes made to the code by the developers working in it 

(GitLab, What is version control? 2023). It is a way to ensure that everyone 

collaborating on the project always has the most recent version of the code and to 

keep track of who made what changes in a much easier and faster way. 

Even though I was working on this project alone, I still needed to practice version 

control, in order to track the changes that I made to the code and to potentially revert 

any changes, if needed. In my project, I used Git and GitHub for version control.  

Git is a version control system used for tracking code changes and collaborating on 

code. Git deals with repository managements, cloning projects to work on a local copy, 

controlling and tracking changes with Commit, allowing developers to work on different 

parts and version of projects with Branch and Merge, pulling the latest version of the 

project using Pull and pushing local updates to the main project using Push. 

(W3schools.com) 

GitHub is a cloud-based platform where code can be stored in Git repositories, and 

which allows collaborative working. (About github and git)  

The first step in the version control process was to create a repository on GitHub.  

I used GitHub Desktop, an interface tool which makes it easier to perform Git 

operations like pushing changes or pulling updates, managing branches, and so on. 

The reason why I mostly used GitHub Desktop, as opposed to using Git from the 

command line, is because its interface is more intuitive. 

Throughout the development server, I was only working on the main branch of my 

application, since I was developing the code on my own and I did not need anyone 

else to verify or approve my code before pushing it to the main branch. If I were to 

follow a better practice for branching, I would create a new branch for each specific 

feature, task or bug fix, which is a strategy that is especially useful when collaborating 

with other developers on a project. This strategy ensures that the main branch is the 

one branch that is always stable and has only code that has been thoroughly tested 

and is ready to be pushed to production. If I could change one thing related to version 

control during the development of this project, it would be using this branching strategy. 

With the use of Git and GitHub, along with GitHub Desktop, I was provided with a 

robust version control system that ensured the development process went smoother 

and allowed me to keep track of changes and revert changes without any problems, 

when necessary. 



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 49 of 75 
 

GDPR (General Data Protection Regulation) 

GDPR (General Data Protection Regulation) is a data privacy and security law 

established by the European Union, which includes requirements for organizations 

around the world, with the purpose of guarding the personal data of its citizens. (What 

is GDPR, the EU's new Data Protection Law? 2024) 

Since my application is based in the European Union and collect, processes and 

stores data of people that reside in the European Union, in a real-life situation, GDPR 

compliance would be a very important aspect for an application like the one that I 

created. In the development of my application, I researched key aspects of GDPR and 

tried to adhere to them and respect them in the best possible way that I could, given 

the context of the project and my limited experience with this issue. 

In what follows, I will describe in more detail the main principles of GDPR that I 

managed to successfully implement in my project. 

Lawfulness, Fairness and Transparency 

This principle of the GDPR states that all data that is collected from the suers should 

be collected and processed in a way that is lawful and transparent, and it is for a 

legitimate purpose. 

In my application, I provided a clear privacy policy that describes what data is collected 

and for what purpose, how long the data is stored in the application, security measures 

and users’ rights. I allow users to explicitly consent to this privacy policy when they 

register by checking the consent box, and I keep records on user consent in the 

PostgreSQL database of my application. 

Data Minimization 

This principle of the GDPR states that only the data that is necessary for the intended 

purpose of the application is to be collected. 

In my application, I am collecting only the personal information that is relevant for 

authentication (like email and password), and for the delivery of the features present 

on my platform, like history of journal entries, daily goals, personalized insights and so 

on. I am not collecting unnecessary data that is not required, for example date of birth, 

personal address, or phone number. 

Right to Access and Deletion 

This principle of the GDPR states that users should have access to their data and that 

they should be able to delete their stored data form the application. 

The users of my application have the possibility to access their personal data, such as 

journal entries, and they have the option to request the deletion of their data, by 

choosing to delete their account. 



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 50 of 75 
 

Data Protection Measures 

Another principle of the GDPR is that the personal data of the users of the application 

should be protected against unauthorized access. 

Data protection measures include encryption of sensitive data like passwords, and the 

use of tokens that are secure. In my application, I am using bcrypt to hash user 

passwords in the database and I am implementing a JWT token-based authentication, 

which adds a layer of security. 

  



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 51 of 75 
 

Code Implementation 

This chapter of the report will describe into more detail the actual implementation of 

the code for creating the desired web application. Aspects regarding both frontend and 

backend code implementation will be discussed, as well as a few examples of some 

interesting or worth mentioning code implementations. There will also be a section 

where the most important tools, technologies and frameworks used throughout the 

project will be described. 

Tools, Technologies, and Frameworks 

This section will be used to briefly mention and describe the most important tools, 

technologies and frameworks that were used in order the achieve my goals of 

implementing a fully functional web application. 

Task Management 

Creating new tasks, editing task deadlines, sorting tasks in the corresponding category 

(To do, Doing or Done) was done in Trello. Every week, I set a goal for myself of what 

I wanted to achieve for both the code and the report, and then created the necessary 

tasks for achieving those goals. If there were any tasks that were not finished from 

one week to another, I moved them to the following week. 

Design and Planning 

When it comes to the design process, I used Figma to create both the wireframes and 

the “prototype” before implementing the actual application. Figma is very popular 

among UX/UI designers, and it offers free premium access to students, which was 

very useful for my project. 

I also used Figma to create a MoSCoW analysis and the database diagrams (ER 

diagram and RDM). Apart from the design tool, Figma also offers various templates 

for designing project, managing projects, creating presentation, etc. Among these, 

there were templates available for the diagrams that I needed to create. 

Version Control 

Version control was handled through Git, GitHub and GitHub Desktop, like I 

mentioned in the chapter dedicated to this specific subject. 

Databases 

For the SQL database, I chose PostgreSQL and I used it with the Sequelize ORM in 

order to simplify the interactions with the database, to be able to define database 

models and to manage the database migrations that I created. 

For the NoSQL database, I opted for MongoDB, and I used with the Mongoose library 

in order to define database schemas and to perform interactions with the database. 



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 52 of 75 
 

IDE 

The Integrated Development Environment (IDE) that I used for developing the code is 

Visual Studio Code (VS Code). The reason behind this is the support for many 

programming languages that VS Code offers, the integrated terminal, the big variety 

of community developed plugins that are easy to install, the support for debugging and 

the syntax highlighting feature. 

Frontend Development 

The frontend application was built using React.js, which is a JavaScript library that 

allows users to build user interfaces. React.js is component-based, which means that 

it allows for reusable components that manage their own state to be built, and then 

reused to create more complex UIs. (React – a JavaScript library for building user 

interfaces) 

The library that I used in order to handle client-side routing and to enable the 

navigation between different pages of the application is React Router DOM. 

To style the frontend of my platform, I used a combination of Tailwind CSS and 

Tailwind Elements. Tailwind CSS follows a utility-first approach, which makes the 

development process much faster and styling the code is very easy and fast. Tailwind 

Elements provided built-in components that I was able to integrate seamlessly in my 

code with Tailwind CSS. One example of a page where I used Tailwind Elements are 

the Login and Register pages, more precisely the two forms used on those pages. 

In order to handle HTTP requests from the frontend to the backend, I used Axios. 

Axios is a JavaScript library that allows to handle HTTP requests and it provides and 

API for making requests (GET, POST PUT and DELETE requests). 

For the text editor needed on the page where users can write a new journal entry, I 

used a library named Draft.js. This library fit seamlessly into my React application and 

it was very easy to implement, without having to think about issues like rendering, input 

behavior, and so on. 

Backend Development 

The backend was built using Node.js. Node.js is a JavaScript runtime which is 

designed to help build network application. It provides an efficient runtime environment 

for the server to execute JavaScript. (Node.js - about node.js®) 

Express.js, a web framework for Node.js, was also used to create a RESTful API. 

This framework helped to simply the process of handling routes and handling HTTP 

requests. 

For authentication and session management, I used JWT (JSON Web Tokens). The 

use of JWT helped to ensure that the communication between the client and the server 

is secure. 



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 53 of 75 
 

In order to make it easier to handle JSON and data encoded in the URL, I used Body-

parser. 

During the development process, I used Nodemon. Nodemon automatically restarted 

the server whenever I made any changes to any file, therefore saving me the time and 

effort of manually restarting the server every time I made changes to files. 

Sentiment Analysis and Insights 

To analyze sentiment from the journal entries that users make, I used Sentiment.js. 

Even though it is not the most complex module, it was the one I could find to work with 

JavaScript and not cost money to use. 

The libraries that I used for creating the interactive charts on the Insights page of my 

application are Chart.js and React-Chartjs-2. While Chart.js provided the main 

functionality for charting, React-Chartjs-2 provided a React wrapper that made 

integration within my project much easier. 

Testing 

Postman was used to test the API endpoints that I implemented. This helped me 

ensure that the backend was working correctly and the response that I was getting for 

my requests were the expected ones. 

In order to implement backend testing, I used a combination of the Mocha test 

framework and the Chai.js assertion library. Mocha is a JavaScript test framework that 

runs on Node.js and in the browser, which makes asynchronous testing easier to 

perform (The fun, simple, flexible JavaScript test framework). Chai.js is an assertion 

library for Node and the browser (Chai assertion library). The two are very easy to pair 

together, in order to create both simple and complex backend test cases. 

Deployment 

My web application is deployed on Render.com, which is a cloud platform that allows 

for building, deploying and scaling applications with ease (Cloud application platform). 

Others 

I used dotenv to manage environment variables throughout my application, both for 

the frontend and the backend implementations. 

In the process of registering a new user, I used bcrypt to hash password. This added 

an extra layer of security to my application. 

To allows the frontend and the backend to communicate, I used CORS (Cross-Origin 

Resource Sharing). 

Interesting implementations 

In this section of the report, I will describe into more detail a few implementations from 

my code that I consider to be worth mentioning. 



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 54 of 75 
 

Authentication and Authorization 

This implementation ensures that only registered and authenticated users can have 

access to certain features of my web application, therefore providing a secure 

experience. This implementation decides how users register, log in and gain access 

to protected resources from the application. 

The authentication and authorization functionality were designed using a combination 

of bcrypt (for hashing passwords) and JWT (JSON Web Tokens, for session 

management). I also implemented a middleware to protect the restricted routes from 

my application. 

The process of registering a new user is handled by the register function in the 

authController.js. The code for registering a new user can be seen in Figure 35. 



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 55 of 75 
 

 

Figure 35. Authentication controller – Register 

The steps for the registration process are the following: 

1. User input is validated using the Joi schema that can be seen in the image below. 



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 56 of 75 
 

 

Figure 36. Joi validation - Register 

2. The system checks if the email address is already associated with a user account. 

3. Once these validations and verifications are complete, the next step is to hash 

password of the newly created user. This is a crucial step due to the fact that storing 

password in plain text in the database represents a critical security risk. 

4. The new user’s details, including the hashed password, are then saved in the 

PostgreSQL database that my application is connected to. 

The process of logging in an existing user is handled by the login function in 

authController.js. The code for logging in a user can be seen in Figure 37. 



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 57 of 75 
 

 

Figure 37. Authentication controller – Login 

The steps for the login process are the following: 

1. User input is validated using the Joi schema which can be seen in the image below. 

 

Figure 38. Joi validation - Login 



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 58 of 75 
 

2. The email is checked in the database using findOne and the password provided 

by the user trying to log in is compared with the hashed password from the 

database using bcrypt.compare. 

3. If the credentials provided by the user are correct, a JWT token is generated using 

the jsonwebtoken library and this token includes user specific claims (id and email) 

and is signed with a secret key, which I am storing in the environment variables. 

The token is also assigned a certain expiration time, also stored in the environment 

variables. 

4. The token is the sent to the client as part of the response header, and the client 

stores it in localStorage. 

Once a user is authenticated, they can access protected routes from the application. 

This is where the custom middleware function that I implemented, verifyToken, is used. 

If the token is valid, then the user is allowed to proceed and access the protected route 

that they are trying to access. If the token is invalid, the user is denied access to the 

protected route, therefore maintaining the integrity of the restricted resources in my 

application. The implementation of the token verification middleware can be seen in 

the image below. 

 

Figure 39. Token verification middleware 



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 59 of 75 
 

Here is an example of how the middleware is being applied in the routes corresponding 

to the journal functionality of my application, for which a user needs to be logged in to 

access: 

 

Figure 40. Example of usage of verifyToken middleware 

On the frontend, the login functionality is implemented in the login component, 

Login.js. When a user submits the login form after filling in their credentials, these 

credentials are sent to the /api/auth/login endpoint using the Axios library. If the login 

is successful, the returned token is stored in localStorage and the application state – 

isAuthenticated – is updated, which enabled the rendering of protected components, 

as well navigation to secure routes. 

Authentication and authorization mechanisms are also integrated in the App 

component of my React frontend application. Different user flows are allowed based 

on the user’s authentication status – isAuthenticated – and based on the user’s userId. 

This component handles authentication state by determing is a user if logged in or not 

(using the state variables isAuthenticated and userId) and it also implements protected 

routes through the PrivateRoute component. The authorization logic is integrated by 

passing the userId to those components that need it in order to access data specific 

to the user. All of this can be seen in the code snippet below, in Figure 41. 



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 60 of 75 
 

 

Figure 41. App.js code snippet 

Credentials to test the application 

In order to see the application in the case when a user has multiple journal entries and 

has filled in the mood questionnaires throughout multiple days, the following 

credentials can be used to log in: 

Email: frank123@gmail.com 

Password: FranksPassword 



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 61 of 75 
 

Testing 

In this chapter, I will describe in more detail the types of testing that I performed for my 

application. 

Software testing is a very important practice that has as purpose evaluating and 

improving the quality of software products. Performing testing on application is 

essential in order to ensure that they are functioning correctly, and that they are 

meeting the needs and requirements and ultimately providing value to their end users. 

The various types of tests that I conducted and implemented for this project will be 

described in what follows. 

User testing 

During the beginning phases of the project, it was suggested by my supervisor that I 

perform some simple user testing in order to validate the designs that I had created, 

and to identify potential issues with this prior to the actual implementation of my 

application. 

I decided to perform user testing in the form of think aloud tests. Think aloud testing is 

an observation method of user testing which, as suggested by its name, involves 

asking users to perform certain tasks on the application and to think out loud while 

doing so. (Usability body of knowledge) 

The scenarios of the think aloud tests that I conducted were regarding different pages 

of my application (mainly the homepage, journal page, mood tracker page and insights 

page).  

One example of think aloud test that I performed was to show the users the homepage 

– the one for the case when a user is logged in – and ask them what they think is 

possible do to on that page and what some features of the application are. Most of the 

users clicked on the “Start writing” button right away and then successfully navigated 

to the journal entry writing page. This reaffirmed to me that one of the main features 

of the platform, which is represented by the journal-like functionality, is easily 

accessible to the users.  

Another example of task that I asked the users to perform is to complete a mood 

tracker questionnaire, and then view the changes in mood insights that it might 

generate. All the users knew that in order to achieve this, they had to navigate to the 

Mood Tracker page (from the navigation bar), fill out one of the questionnaires 

available there, and then navigate to the Insights page (also from the navigation bar). 

This scenario brought up several suggestions form users, such as adding the option 

to navigate directly the desired mood tracker questionnaire from the homepage, and 

also to somehow link the Mood Tracker page directly with the Insights page, to suggest 

that there is a direct connection between the two features of my application. 



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 62 of 75 
 

After conducting this type of users testing, I took the key results and divided them in 

two categories – strengths and points that could use some improvement. Among the 

strengths that were identified by the users, were aspects such as clear and visually 

appealing design, interesting and valuable generated personal insights, and easy-to-

use features. On the other hand, some features that could use improvement were 

adding an easily visible and attention catching crisis intervention on the homepage or 

on one of the main pages, and connecting the main features of the platform more 

directly. 

Backend testing 

When it comes to testing the backend of my application, I decided to use the Mocha 

JavaScript testing framework, together with the Chai.js assertion library, as I knew 

from previous experience that they compliment each other well and that they allow for 

creating clear and comprehensive test cases. Mocha provides the structure for the 

tests and the execution framework, while Chai.js provides assertions that verify the 

results of the implemented tests. 

I created a file called setup.test.js, which can be seen in Figure 42. In this file, I 

initialized and configured the testing environment, to make sure that the application 

ran in a way that is testing-specific. I also loaded the Sequelize database instance and 

I imported the models used in my application, which represent the database tables 

needed for performing test specific operations (like creating data, updating data or 

cleaning up test data). I ensured that all the necessary tables were created in the test 

database before running the actual tests by using the syncDatabase function. I also 

implemented the before and the after hooks. Like their names suggest, the before 

hook runs once before all the tests are run, while the after hook runs once after all the 

tests are completed. The before hook synchronizes the database and makes sure that 

the specified tables are cleared, and the after hook cleans up the test data from the 

database once the tests are completed. 

 



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 63 of 75 
 

 

Figure 42. setup.test.js file 

The tests that I implemented in my code are integration tests, since they verify that 

different parts or modules of my application are working together as I expect them to. 

I am testing API endpoints, such as /api/auth/register, /api/auth/login, and so on, as 

well as database interactions, such as ensuring that a user is created and inserted in 

the database upon user registration.  

I also implemented a test that can be considered as an end-to-end workflow test, more 

precisely for the workflow of creating a goal and then retrieving it. This test simulates 

the entire workflow, from registering a user and then logging that user in, to creating a 

goal and then displaying the daily goals for the logged in user, which include the 

previously created goal. What I trying to achieve with this workflow was to ensure that 

the different parts of my application – models, routes, middleware and controllers – 

are working together seamlessly and as expected. 



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 64 of 75 
 

While I was able to implement a few backend tests for my application, I am nowhere 

near a percentage high enough to consider that I have most of my application tested. 

Since I don’t have much experience with PostgreSQL applications, it took me quite 

some time to figure out how to perform backend testing in this context and, in the 

beginning, it was hard for me to find a way to use a test database instead of my 

development database for the testing, and I kept running into errors. 

In the future, I would like to focus more on creating backend tests for my application. 

Frontend testing 

Unfortunately, I was not able to implement any frontend testing in my application, due 

to other features being more time consuming or more complex to implement then I 

had originally assessed, or due to running into unexpected error. 

Even though I was not able to implement frontend tests, I did research possible 

frameworks or libraries that I would have liked to use. One of them is Cypress, which 

is a JavaScript-based front-end testing tool that enables developers to perform two 

types of frontend tests, end-to-end tests and component tests. Cypress is a useful tool 

when it comes to making sure that the user flow of the created application which is 

being tested is the correct one. This would have been useful if I wanted to perform 

UX/UI testing on my web application. 

Another library that I researched and was hoping to use in order to perform frontend 

tests in Jest, a JavaScript testing framework. 

  



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 65 of 75 
 

Deployment and Hosting 

This section of the report is dedicated to providing more information regarding the 

deployment process and the chosen option for hosting my web application. 

Deployment is a term that refers to the mechanism through which a software is made 

available by developers, to users, or other programs, on a system. The options that I 

was considering for deploying my website were Render, Netlify and Vercel, and my 

final decision was to go with Render. While all three of them are reliable and widely 

used for deploying web applications, and they all offer a free tier, I will explain in what 

follows the reason why I chose to deploy my application on Render. Another option 

that I was also looking into and would have been suitable for my project is Heroku, but 

as of 2022 it does not offer a free tier anymore. 

Based on the research that I conducted prior to deploying my application, I found there 

to be some important differences in these options, that were relevant to my project and 

its needs. A key factor in my decision-making process was the fact that I needed to 

deploy both my backend and my frontend, in order for my application to be complete 

and to work as desired. While deploying the frontend would have been of similar 

difficulty on all three platforms that I was deciding between, the same cannot be said 

about deploying the backend part of my web application.  

I found that Render provides support for backend applications, and it actually makes 

the process of deploying backend more straightforward and simpler, even for 

developers that do not have such extended experience with this. Deploying the 

backend of my project was very easy due to the clear documentation and wide 

community support. On the other hand, I found out that both Vercel and Netlify are 

optimized and more commonly used for deploying frontend applications that are 

serverless. Neither of these are designed for RESTful APIs, like the one that I 

implemented for my project, and they do not provide native support for backend 

frameworks, such as Express, the one that I used. 

Moreover, when it comes to database integration on the three platforms that I was 

considering, I came to the conclusion that Render was also the option that was the 

better fit for my project’s needs and requirements. It supports directly deploying both 

MongoDB and PostgreSQL, the two databases that I implemented in my application. 

The possibility to provide built-in environment variables in order to pass database 

credentials was a huge advantage and help, due to the fact that I was already using 

environment variables in my code, and it was very easy to use the same ones on 

Render. When it comes to both Vercel and Netlify, my research suggested that neither 

of them provides database hosting and that relying on external services is needed to 

manage integrating the needed databases with my application. 

Keeping in mind these considerations, I concluded that the clear choice for deploying 

my application was Render. 



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 66 of 75 
 

The next step after deciding this was to establish whether I wanted to deploy my 

application as a single, monolithic application, or deploy the and host the frontend and 

the backend separately. I first considered deploying the backend and the frontend 

together, as a single project on Render, due to the fact that this process would have 

been simpler and more straightforward, since I was developing them together and they 

were contained within the same project. This approach would have meant that I would 

only have one project to manage and deploy, which is easier to handle and debug, 

and does not introduce new potential issues – such as managing cross-origin issues, 

API calls between different services, and multiple pipelines for building and deploying 

the application.  

However, I chose not to deploy them together, and instead I deployed each part of my 

application (backend and frontend) separately. The reason behind my choice was the 

fact that the kind of platform that I implemented for this project is one that, in the long 

term, would need the possibility for better scaling individually. As more users join the 

website, the frontend will most likely not need too scale too much compared to how it 

is at this stage, but the backend might need to scale considerably. If each user of the 

application would start writing daily journal entries, or some even multiple journal 

entries per day, this could potentially raise some serious issues for the application.  

I also enjoyed the flexibility that this approach provided, with me being able to change 

or replace different parts of the application, for example in the backend, without 

needing to drastically change the frontend.  

Before deploying the backend and the frontend, I had to create a PostgreSQL 

database on Render and populate it with the data for questionnaires and questions 

that I had in the database from my localhost. This steep of seeding the data was 

needed because the questionnaires in my application are static and, for the time being, 

there is no admin panel from which an admin user might be able to edit the 

questionnaires and their respective questions. Another thing that I needed to do after 

creating a PostgreSQL database on Render was to update the environment variables 

from my code with the database URL generated by Render. 

Then, I deployed first my backend, and then finally my frontend.  

CI/CD Pipelines 

CI/CD (Continuous Integration/ Continuous Deployment) is a practice used in 

programming automates and streamlines the process of building, testing and 

deploying code. CI, or Continuous Integration, refers to the process of automatically 

integrating code changes made by multiple developers on a shared repository, while 

making sure that the new code works as it is supposed to, and that it does not 

introduce bugs or errors. CD, or Continuous Deployment, extends CI by automatically 

deploying the new code to the production environment after ensuring that it passes all 

the appropriate tests. (What is Ci/CD?)   



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 67 of 75 
 

To achieve CI/CD, I used GitHub Actions and created the necessary workflows for both 

my frontend and my backend. I first created a workflow for my backend, which can be 

seen partially in Figure 43. 

 

Figure 43. Backend workflow 



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 68 of 75 
 

As can be seen in the screenshot, the section regarding the “Test Backend” job from 

this workflow is currently commented out. The reason for this is the fact that I was 

unable to connect to my PostgreSQL test database in order to run my backend tests. 

I spend a significant amount of time trying to fix this issue and followed different 

approaches for this, but I simply could not do it. After doing some research on this., I 

suspect that the reason for not being able to connect to the database stems from the 

fact that pgAdmin’s firewall settings, which are probably preventing connections that 

are being initiated from GitHub Actions. 

Due to this inconvenience, my workflow for the backend is incomplete, but the CI/CD 

pipeline does work, and it is successfully deploying my backend to Render every time 

that there is a new commit on the main branch. 

I also created a workflow for my frontend, which can be seen in Figure 44. The 

deployment of the frontend happens upon the successful deployment of the backend. 

This workflow does not include a step for frontend testing, as I was not able implement 

any frontend testing during the development of my project. (The importance of 

software testing 2024) 



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 69 of 75 
 

 

Figure 44. Frontend workflow 

The link to my Render frontend application is https://mindscribe-

frontend.onrender.com. 

  

https://mindscribe-frontend.onrender.com/
https://mindscribe-frontend.onrender.com/


Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 70 of 75 
 

Future improvements 

In this section of the report, I will discuss in more detail about a few improvements or 

additional features that I would like to implement on my project in the future. 

Notifications & Reminders 

First of all, I would like to implement a notification system for my web application. This 

could be even a simple system that sends notifications related to new insights that 

have been generated for the user based on their journal entries and mood tracker 

questionnaires from the previous week.  

I tried to implement simple notifications that tell the users that their insights have been 

updated with react-toastify, but my attempt was unsuccessful. This was due to the fact 

that react-toastify is used for sending alerts rather than notifications and I only found 

a way to send those alerts by triggering a button click, which was not my desired 

functionality. 

I would also like to send users reminders, such as reminders at different times of the 

day to fill in the corresponding mood tracker questionnaire for that time of the day, 

reminders to write journal entries daily and to set goals for the day, reminders when 

they have an unfinished journal entry, and so on. 

More complex Insights page 

Another improvement that I would like to add to my platform is providing users with a 

more detailed and better adjustable Insights page. 

An example of what I would like to add to this page is to generate insights for different 

periods of time, such as 3 days, one week, one month, 3 months, 6 months, one year, 

etc. Right now, I am generating the user insights based only on journal entries and 

mood questionnaire answers from the last 7 days. I think it could be valuable to allow 

users to see their mood changes and the development of their emotional wellbeing 

during more diverse and longer periods of time. 

I would also like to conduct sentiment analysis on the text responses of the mood 

tracking questionnaires’ questions. This would allow for a more complex calculation of 

mood score, stress level and energy level, and therefore it would provide more 

accurate mood trends for the users. 

In addition to this, I would like to provide other types of insights as well, aside from the 

ones that I am currently providing, such as pattern recognition from journal entries and 

mood tracker questionnaires. It could also be a good idea to let users know the rate of 

completion of daily goals and to find out what is stopping them from successfully 

completing all their daily goals. 



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 71 of 75 
 

Guided prompt journaling 

One more feature that I would like to add to the journaling section of my platform is 

guided prompt journaling. This would be a useful tool to motivate people to write daily 

journal entries, and it could provide an inspiration of what users can write about. 

This feature would also allow users to better reflect on their feelings and get a better 

understanding of their thoughts and emotions. 

Export journal entries 

Additionally, I think it could be useful to provide users with the possibility of exporting 

their journal entries, or even their personalized insights. They could then share these 

notes with, for example, their therapists or beloved ones, and better process and 

assimilate this information. 

This feature would also ensure that my application is even more in compliance with 

GDPR rules and regulations. 

Personalization 

Another feature that could provide a more user friendly and personal experience to the 

users of my web application would be allowing them to customize the appearance of 

the user interface. Some examples of what they could customize include the option 

for a dark mode, the display of elements like scales (whether they want emoji-based, 

number-based, text-based scales, etc.), and so on.  

Homepage for guests 

One other change that I would like to implement in the future to the platform is finalizing 

the implementation of the homepage that is dedicated to guest users (users that are 

not logged in or do not have an account on the website).  

This would be the entry point to the platform, the page that first shows when users 

navigate to the website. The purpose of this page would be to attract users by 

introducing them to the platform and its main features, and to guide them to create an 

account on the platform. 

The reason why I did not implement this page yet is because I did not have enough 

time, and I wanted to focus on other parts of the application that were of a higher 

importance. 

Today’s quote 

Another feature that I would like to add to the homepage of my application is a “today’s 

quote” section. This section would display a different motivational quote or quote 

related to mental wellbeing every day, in order to keep users engaged and remind 

them that emotional wellbeing is a journey. 



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 72 of 75 
 

Machine Learning 

One last feature that could be interesting to implement for this application in the future 

would be to implement machine learning algorithms for analyzing and tracking user 

sentiments over time. The main idea behind this would be to gather data from different 

user interaction on the platform, such as the journal entries that users write, the daily 

goals that they set for themselves and their responses to the mood tracker 

questionnaires, and then use machine learning models to analyze different trends in 

the users’ emotional states. 

One example of this could be recognizing patterns in written content (journal entries) 

and detecting emotional shifts over different periods of time. Such a feature could offer 

more dynamic and adaptive personalized insights.  

  



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 73 of 75 
 

Conclusion 

The management and development of this web application has been an equally 

rewarding and challenging process, which allowed me to apply the skills and 

knowledge that I have gained throughout my education, but also to gain new skills. 

The project combined elements of UX design, database design and implementation, 

and backend and frontend development, to create a unique platform. 

The main objective of this project was to create a platform that provides a safe space 

for self-expression through journaling, while also offering its users personalized 

insights into their emotional wellbeing through sentiment analysis and mood tracking. 

With the combination of journal entries and mood tracking questionnaires that can be 

found in the web application, users can now reflect on their emotions and track 

changes in their mood, energy level and stress level over time, and receive actionable 

insights to support their wellbeing. 

As with any project, there is, of course, room for improvement, and future iterations of 

the application could include more advanced features of the application that would 

enhance the impact of the application. 

However, it is my belief that this project has provided me with the opportunity to 

develop a meaningful web application and has, at the same time, allowed me to grow 

as both a developer and a project manager. The skills and knowledge that I gained 

throughout this project will most definitely contribute to my professional development 

and will allow me to pursue more opportunities in the field of web development. 

  



Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 74 of 75 
 

Reference list 

➢ Moscow prioritization (2024) ProductPlan. Available at: 
https://www.productplan.com/glossary/moscow-prioritization/  (Accessed: 23 
December 2024).  

➢ Dudley, K. (2023) The role of sketching in the design process, Toast Design 
Services. Available at: https://toastdesignservices.co.uk/the-role-of-sketching-in-
the-design-
process/#:~:text=Sketches%20are%20a%20universal%20language,to%20share
%20and%20discuss%20ideas . (Accessed: 23 December 2024).  

➢ What is wireframing? - updated 2024 (2024) The Interaction Design Foundation. 
Available at: https://www.interaction-
design.org/literature/topics/wireframe#:~:text=They’re%20a%20key%20deliverabl
e,colors%2C%20fonts%2C%20or%20imagery . (Accessed: 23 December 2024).  

➢ What is a prototype? (no date) Coursera. Available at: 
https://www.coursera.org/articles/prototype?utm_medium=sem&utm_source=gg&
utm_campaign=B2C_EMEA__coursera_FTCOF_career-academy_pmax-
multiple-audiences-country-multi-
set2&campaignid=20882109092&adgroupid=&device=c&keyword=&matchtype=
&network=x&devicemodel=&adposition=&creativeid=&hide_mobile_promo&gad_
source=1&gclid=Cj0KCQiAsaS7BhDPARIsAAX5cSA5t6iz83yPUUnuxc7BDDs2c
e7JAVTmmDwBbWXfiqzG267UV_Ra56IaApwyEALw_wcB  (Accessed: 23 
December 2024).  

➢ Comment et al. (2024) Introduction of ER model, GeeksforGeeks. Available at: 
https://www.geeksforgeeks.org/introduction-of-er-model/  (Accessed: 26 
December 2024).  

➢ GeeksforGeeks (2024) Relational model in DBMS, GeeksforGeeks. Available at: 
https://www.geeksforgeeks.org/relational-model-in-dbms/  (Accessed: 26 
December 2024).  

➢ DBMS normalization: 1NF, 2NF, 3NF and BCNF with examples - javatpoint (no 
date) www.javatpoint.com. Available at: https://www.javatpoint.com/dbms-
normalization  (Accessed: 26 December 2024).  

➢ Singh, A. (2023) ‘Node.js database magic: Exploring the powers of sequelize Orm’, 
Medium. Available at: https://medium.com/@rishu__2701/node-js-database-
magic-exploring-the-powers-of-sequelize-orm-a22a521d9d9d  (Accessed: 26 
December 2024).  

➢ freeCodeCamp (2018) Introduction to mongoose for mongodb, 
freeCodeCamp.org. Available at: 
https://www.freecodecamp.org/news/introduction-to-mongoose-for-mongodb-
d2a7aa593c57/  (Accessed: 26 December 2024).  

➢ Codecademy (no date) What is express.js?, Codecademy. Available at: 
https://www.codecademy.com/article/what-is-express-js  (Accessed: 26 December 
2024).  

➢ GitLab (2023) What is version control?, GitLab. Available at: 
https://about.gitlab.com/topics/version-control/  (Accessed: 26 December 2024).  

➢ W3schools.com (no date) Introduction to Git and {{title}}. Available at: 
https://www.w3schools.com/git/git_intro.asp?remote=github  (Accessed: 26 
December 2024).  

https://www.productplan.com/glossary/moscow-prioritization/
https://toastdesignservices.co.uk/the-role-of-sketching-in-the-design-process/#:~:text=Sketches%20are%20a%20universal%20language,to%20share%20and%20discuss%20ideas
https://toastdesignservices.co.uk/the-role-of-sketching-in-the-design-process/#:~:text=Sketches%20are%20a%20universal%20language,to%20share%20and%20discuss%20ideas
https://toastdesignservices.co.uk/the-role-of-sketching-in-the-design-process/#:~:text=Sketches%20are%20a%20universal%20language,to%20share%20and%20discuss%20ideas
https://toastdesignservices.co.uk/the-role-of-sketching-in-the-design-process/#:~:text=Sketches%20are%20a%20universal%20language,to%20share%20and%20discuss%20ideas
https://www.interaction-design.org/literature/topics/wireframe#:~:text=They’re%20a%20key%20deliverable,colors%2C%20fonts%2C%20or%20imagery
https://www.interaction-design.org/literature/topics/wireframe#:~:text=They’re%20a%20key%20deliverable,colors%2C%20fonts%2C%20or%20imagery
https://www.interaction-design.org/literature/topics/wireframe#:~:text=They’re%20a%20key%20deliverable,colors%2C%20fonts%2C%20or%20imagery
https://www.coursera.org/articles/prototype?utm_medium=sem&utm_source=gg&utm_campaign=B2C_EMEA__coursera_FTCOF_career-academy_pmax-multiple-audiences-country-multi-set2&campaignid=20882109092&adgroupid=&device=c&keyword=&matchtype=&network=x&devicemodel=&adposition=&creativeid=&hide_mobile_promo&gad_source=1&gclid=Cj0KCQiAsaS7BhDPARIsAAX5cSA5t6iz83yPUUnuxc7BDDs2ce7JAVTmmDwBbWXfiqzG267UV_Ra56IaApwyEALw_wcB
https://www.coursera.org/articles/prototype?utm_medium=sem&utm_source=gg&utm_campaign=B2C_EMEA__coursera_FTCOF_career-academy_pmax-multiple-audiences-country-multi-set2&campaignid=20882109092&adgroupid=&device=c&keyword=&matchtype=&network=x&devicemodel=&adposition=&creativeid=&hide_mobile_promo&gad_source=1&gclid=Cj0KCQiAsaS7BhDPARIsAAX5cSA5t6iz83yPUUnuxc7BDDs2ce7JAVTmmDwBbWXfiqzG267UV_Ra56IaApwyEALw_wcB
https://www.coursera.org/articles/prototype?utm_medium=sem&utm_source=gg&utm_campaign=B2C_EMEA__coursera_FTCOF_career-academy_pmax-multiple-audiences-country-multi-set2&campaignid=20882109092&adgroupid=&device=c&keyword=&matchtype=&network=x&devicemodel=&adposition=&creativeid=&hide_mobile_promo&gad_source=1&gclid=Cj0KCQiAsaS7BhDPARIsAAX5cSA5t6iz83yPUUnuxc7BDDs2ce7JAVTmmDwBbWXfiqzG267UV_Ra56IaApwyEALw_wcB
https://www.coursera.org/articles/prototype?utm_medium=sem&utm_source=gg&utm_campaign=B2C_EMEA__coursera_FTCOF_career-academy_pmax-multiple-audiences-country-multi-set2&campaignid=20882109092&adgroupid=&device=c&keyword=&matchtype=&network=x&devicemodel=&adposition=&creativeid=&hide_mobile_promo&gad_source=1&gclid=Cj0KCQiAsaS7BhDPARIsAAX5cSA5t6iz83yPUUnuxc7BDDs2ce7JAVTmmDwBbWXfiqzG267UV_Ra56IaApwyEALw_wcB
https://www.coursera.org/articles/prototype?utm_medium=sem&utm_source=gg&utm_campaign=B2C_EMEA__coursera_FTCOF_career-academy_pmax-multiple-audiences-country-multi-set2&campaignid=20882109092&adgroupid=&device=c&keyword=&matchtype=&network=x&devicemodel=&adposition=&creativeid=&hide_mobile_promo&gad_source=1&gclid=Cj0KCQiAsaS7BhDPARIsAAX5cSA5t6iz83yPUUnuxc7BDDs2ce7JAVTmmDwBbWXfiqzG267UV_Ra56IaApwyEALw_wcB
https://www.coursera.org/articles/prototype?utm_medium=sem&utm_source=gg&utm_campaign=B2C_EMEA__coursera_FTCOF_career-academy_pmax-multiple-audiences-country-multi-set2&campaignid=20882109092&adgroupid=&device=c&keyword=&matchtype=&network=x&devicemodel=&adposition=&creativeid=&hide_mobile_promo&gad_source=1&gclid=Cj0KCQiAsaS7BhDPARIsAAX5cSA5t6iz83yPUUnuxc7BDDs2ce7JAVTmmDwBbWXfiqzG267UV_Ra56IaApwyEALw_wcB
https://www.coursera.org/articles/prototype?utm_medium=sem&utm_source=gg&utm_campaign=B2C_EMEA__coursera_FTCOF_career-academy_pmax-multiple-audiences-country-multi-set2&campaignid=20882109092&adgroupid=&device=c&keyword=&matchtype=&network=x&devicemodel=&adposition=&creativeid=&hide_mobile_promo&gad_source=1&gclid=Cj0KCQiAsaS7BhDPARIsAAX5cSA5t6iz83yPUUnuxc7BDDs2ce7JAVTmmDwBbWXfiqzG267UV_Ra56IaApwyEALw_wcB
https://www.geeksforgeeks.org/introduction-of-er-model/
https://www.geeksforgeeks.org/relational-model-in-dbms/
https://www.javatpoint.com/dbms-normalization
https://www.javatpoint.com/dbms-normalization
https://medium.com/@rishu__2701/node-js-database-magic-exploring-the-powers-of-sequelize-orm-a22a521d9d9d
https://medium.com/@rishu__2701/node-js-database-magic-exploring-the-powers-of-sequelize-orm-a22a521d9d9d
https://www.freecodecamp.org/news/introduction-to-mongoose-for-mongodb-d2a7aa593c57/
https://www.freecodecamp.org/news/introduction-to-mongoose-for-mongodb-d2a7aa593c57/
https://www.codecademy.com/article/what-is-express-js
https://about.gitlab.com/topics/version-control/
https://www.w3schools.com/git/git_intro.asp?remote=github


Erhvervsakademi SydVest  Denisa-Gabriela Neagu 
Final Bachelor’s Exam 

Page 75 of 75 
 

➢ About github and git (no date) GitHub Docs. Available at: 
https://docs.github.com/en/get-started/start-your-journey/about-github-and-git  
(Accessed: 26 December 2024).  

➢ React – a JavaScript library for building user interfaces (no date) – A JavaScript 
library for building user interfaces. Available at: https://legacy.reactjs.org/ 
(Accessed: 26 December 2024).  

➢ Node.js - about node.js® (no date) Node.js -. Available at: 
https://nodejs.org/en/about  (Accessed: 26 December 2024).  

➢ The fun, simple, flexible JavaScript test framework (no date) Mocha. Available at: 
https://mochajs.org/  (Accessed: 31 December 2024).  

➢ Chai assertion library (no date) Chai. Available at: 
https://www.chaijs.com/#:~:text=Chai%20is%20a%20BDD%20%2F%20TDD,with
%20any%20javascript%20testing%20framework . (Accessed: 31 December 
2024).  

➢ Cloud application platform (no date) Render. Available at: https://render.com/  
(Accessed: 31 December 2024).  

➢ What is Ci/CD? (no date) Revenera. Available at: 
https://www.revenera.com/software-composition-analysis/glossary/what-is-ci-
cd?utm_source=google&utm_medium=cpc&utm_campaign=EN-SCA-FCI-EMEA-
Generic-
SMART22&utm_content=Dynamic_Ads&id=PPC_SCA_2023&lead_source=PPC
&k_clickid=_k_EAIaIQobChMIltLtrL7SigMV54KDBx3yTCHjEAAYASAAEgLGXfD
_BwE&gad_source=1&gclid=EAIaIQobChMIltLtrL7SigMV54KDBx3yTCHjEAAYA
SAAEgLGXfD_BwE  (Accessed: 31 December 2024).  

➢ The importance of software testing (2024) IEEE Computer Society. Available at: 
https://www.computer.org/resources/importance-of-software-testing  (Accessed: 
31 December 2024).  

➢ Usability body of knowledge (no date) Welcome to the Usability Body of 
Knowledge. Available at: https://www.usabilitybok.org/think-aloud-
testing#:~:text=A%20direct%20observation%20method%20of,and%20feeling%2
0at%20each%20moment . (Accessed: 31 December 2024).  

➢ What is GDPR, the EU’s new Data Protection Law? (2024) GDPR.eu. Available 
at: https://gdpr.eu/what-is-gdpr/  (Accessed: 31 December 2024).  

➢ (No date) What is an API? - application programming interface explained - AWS. 
Available at: https://aws.amazon.com/what-is/api/  (Accessed: 02 January 2025).  

➢ What is agile? and when to use it (no date) Coursera. Available at: 
https://www.coursera.org/in/articles/what-is-agile-a-beginners-
guide?utm_medium=sem&utm_source=gg&utm_campaign=B2C_EMEA__course
ra_FTCOF_career-academy_pmax-multiple-audiences-country-
multi&campaignid=20858198824&adgroupid=&device=c&keyword=&matchtype=
&network=x&devicemodel=&adposition=&creativeid=&hide_mobile_promo&gad_
source=1&gclid=Cj0KCQiA7NO7BhDsARIsADg_hIZbMvBkt9EynhDJ5_IvCS_o9c
VrhTl8yh_ssgBw6FfWNOWxm5DwgjcaAnXTEALw_wcB  (Accessed: 02 January 
2025).  

 

 

https://docs.github.com/en/get-started/start-your-journey/about-github-and-git
https://legacy.reactjs.org/
https://nodejs.org/en/about
https://mochajs.org/
https://www.chaijs.com/#:~:text=Chai%20is%20a%20BDD%20%2F%20TDD,with%20any%20javascript%20testing%20framework
https://www.chaijs.com/#:~:text=Chai%20is%20a%20BDD%20%2F%20TDD,with%20any%20javascript%20testing%20framework
https://render.com/
https://www.revenera.com/software-composition-analysis/glossary/what-is-ci-cd?utm_source=google&utm_medium=cpc&utm_campaign=EN-SCA-FCI-EMEA-Generic-SMART22&utm_content=Dynamic_Ads&id=PPC_SCA_2023&lead_source=PPC&k_clickid=_k_EAIaIQobChMIltLtrL7SigMV54KDBx3yTCHjEAAYASAAEgLGXfD_BwE&gad_source=1&gclid=EAIaIQobChMIltLtrL7SigMV54KDBx3yTCHjEAAYASAAEgLGXfD_BwE
https://www.revenera.com/software-composition-analysis/glossary/what-is-ci-cd?utm_source=google&utm_medium=cpc&utm_campaign=EN-SCA-FCI-EMEA-Generic-SMART22&utm_content=Dynamic_Ads&id=PPC_SCA_2023&lead_source=PPC&k_clickid=_k_EAIaIQobChMIltLtrL7SigMV54KDBx3yTCHjEAAYASAAEgLGXfD_BwE&gad_source=1&gclid=EAIaIQobChMIltLtrL7SigMV54KDBx3yTCHjEAAYASAAEgLGXfD_BwE
https://www.revenera.com/software-composition-analysis/glossary/what-is-ci-cd?utm_source=google&utm_medium=cpc&utm_campaign=EN-SCA-FCI-EMEA-Generic-SMART22&utm_content=Dynamic_Ads&id=PPC_SCA_2023&lead_source=PPC&k_clickid=_k_EAIaIQobChMIltLtrL7SigMV54KDBx3yTCHjEAAYASAAEgLGXfD_BwE&gad_source=1&gclid=EAIaIQobChMIltLtrL7SigMV54KDBx3yTCHjEAAYASAAEgLGXfD_BwE
https://www.revenera.com/software-composition-analysis/glossary/what-is-ci-cd?utm_source=google&utm_medium=cpc&utm_campaign=EN-SCA-FCI-EMEA-Generic-SMART22&utm_content=Dynamic_Ads&id=PPC_SCA_2023&lead_source=PPC&k_clickid=_k_EAIaIQobChMIltLtrL7SigMV54KDBx3yTCHjEAAYASAAEgLGXfD_BwE&gad_source=1&gclid=EAIaIQobChMIltLtrL7SigMV54KDBx3yTCHjEAAYASAAEgLGXfD_BwE
https://www.revenera.com/software-composition-analysis/glossary/what-is-ci-cd?utm_source=google&utm_medium=cpc&utm_campaign=EN-SCA-FCI-EMEA-Generic-SMART22&utm_content=Dynamic_Ads&id=PPC_SCA_2023&lead_source=PPC&k_clickid=_k_EAIaIQobChMIltLtrL7SigMV54KDBx3yTCHjEAAYASAAEgLGXfD_BwE&gad_source=1&gclid=EAIaIQobChMIltLtrL7SigMV54KDBx3yTCHjEAAYASAAEgLGXfD_BwE
https://www.revenera.com/software-composition-analysis/glossary/what-is-ci-cd?utm_source=google&utm_medium=cpc&utm_campaign=EN-SCA-FCI-EMEA-Generic-SMART22&utm_content=Dynamic_Ads&id=PPC_SCA_2023&lead_source=PPC&k_clickid=_k_EAIaIQobChMIltLtrL7SigMV54KDBx3yTCHjEAAYASAAEgLGXfD_BwE&gad_source=1&gclid=EAIaIQobChMIltLtrL7SigMV54KDBx3yTCHjEAAYASAAEgLGXfD_BwE
https://www.revenera.com/software-composition-analysis/glossary/what-is-ci-cd?utm_source=google&utm_medium=cpc&utm_campaign=EN-SCA-FCI-EMEA-Generic-SMART22&utm_content=Dynamic_Ads&id=PPC_SCA_2023&lead_source=PPC&k_clickid=_k_EAIaIQobChMIltLtrL7SigMV54KDBx3yTCHjEAAYASAAEgLGXfD_BwE&gad_source=1&gclid=EAIaIQobChMIltLtrL7SigMV54KDBx3yTCHjEAAYASAAEgLGXfD_BwE
https://www.computer.org/resources/importance-of-software-testing
https://www.usabilitybok.org/think-aloud-testing#:~:text=A%20direct%20observation%20method%20of,and%20feeling%20at%20each%20moment
https://www.usabilitybok.org/think-aloud-testing#:~:text=A%20direct%20observation%20method%20of,and%20feeling%20at%20each%20moment
https://www.usabilitybok.org/think-aloud-testing#:~:text=A%20direct%20observation%20method%20of,and%20feeling%20at%20each%20moment
https://gdpr.eu/what-is-gdpr/
https://aws.amazon.com/what-is/api/
https://www.coursera.org/in/articles/what-is-agile-a-beginners-guide?utm_medium=sem&utm_source=gg&utm_campaign=B2C_EMEA__coursera_FTCOF_career-academy_pmax-multiple-audiences-country-multi&campaignid=20858198824&adgroupid=&device=c&keyword=&matchtype=&network=x&devicemodel=&adposition=&creativeid=&hide_mobile_promo&gad_source=1&gclid=Cj0KCQiA7NO7BhDsARIsADg_hIZbMvBkt9EynhDJ5_IvCS_o9cVrhTl8yh_ssgBw6FfWNOWxm5DwgjcaAnXTEALw_wcB
https://www.coursera.org/in/articles/what-is-agile-a-beginners-guide?utm_medium=sem&utm_source=gg&utm_campaign=B2C_EMEA__coursera_FTCOF_career-academy_pmax-multiple-audiences-country-multi&campaignid=20858198824&adgroupid=&device=c&keyword=&matchtype=&network=x&devicemodel=&adposition=&creativeid=&hide_mobile_promo&gad_source=1&gclid=Cj0KCQiA7NO7BhDsARIsADg_hIZbMvBkt9EynhDJ5_IvCS_o9cVrhTl8yh_ssgBw6FfWNOWxm5DwgjcaAnXTEALw_wcB
https://www.coursera.org/in/articles/what-is-agile-a-beginners-guide?utm_medium=sem&utm_source=gg&utm_campaign=B2C_EMEA__coursera_FTCOF_career-academy_pmax-multiple-audiences-country-multi&campaignid=20858198824&adgroupid=&device=c&keyword=&matchtype=&network=x&devicemodel=&adposition=&creativeid=&hide_mobile_promo&gad_source=1&gclid=Cj0KCQiA7NO7BhDsARIsADg_hIZbMvBkt9EynhDJ5_IvCS_o9cVrhTl8yh_ssgBw6FfWNOWxm5DwgjcaAnXTEALw_wcB
https://www.coursera.org/in/articles/what-is-agile-a-beginners-guide?utm_medium=sem&utm_source=gg&utm_campaign=B2C_EMEA__coursera_FTCOF_career-academy_pmax-multiple-audiences-country-multi&campaignid=20858198824&adgroupid=&device=c&keyword=&matchtype=&network=x&devicemodel=&adposition=&creativeid=&hide_mobile_promo&gad_source=1&gclid=Cj0KCQiA7NO7BhDsARIsADg_hIZbMvBkt9EynhDJ5_IvCS_o9cVrhTl8yh_ssgBw6FfWNOWxm5DwgjcaAnXTEALw_wcB
https://www.coursera.org/in/articles/what-is-agile-a-beginners-guide?utm_medium=sem&utm_source=gg&utm_campaign=B2C_EMEA__coursera_FTCOF_career-academy_pmax-multiple-audiences-country-multi&campaignid=20858198824&adgroupid=&device=c&keyword=&matchtype=&network=x&devicemodel=&adposition=&creativeid=&hide_mobile_promo&gad_source=1&gclid=Cj0KCQiA7NO7BhDsARIsADg_hIZbMvBkt9EynhDJ5_IvCS_o9cVrhTl8yh_ssgBw6FfWNOWxm5DwgjcaAnXTEALw_wcB
https://www.coursera.org/in/articles/what-is-agile-a-beginners-guide?utm_medium=sem&utm_source=gg&utm_campaign=B2C_EMEA__coursera_FTCOF_career-academy_pmax-multiple-audiences-country-multi&campaignid=20858198824&adgroupid=&device=c&keyword=&matchtype=&network=x&devicemodel=&adposition=&creativeid=&hide_mobile_promo&gad_source=1&gclid=Cj0KCQiA7NO7BhDsARIsADg_hIZbMvBkt9EynhDJ5_IvCS_o9cVrhTl8yh_ssgBw6FfWNOWxm5DwgjcaAnXTEALw_wcB
https://www.coursera.org/in/articles/what-is-agile-a-beginners-guide?utm_medium=sem&utm_source=gg&utm_campaign=B2C_EMEA__coursera_FTCOF_career-academy_pmax-multiple-audiences-country-multi&campaignid=20858198824&adgroupid=&device=c&keyword=&matchtype=&network=x&devicemodel=&adposition=&creativeid=&hide_mobile_promo&gad_source=1&gclid=Cj0KCQiA7NO7BhDsARIsADg_hIZbMvBkt9EynhDJ5_IvCS_o9cVrhTl8yh_ssgBw6FfWNOWxm5DwgjcaAnXTEALw_wcB

